Как работает коробка автомат с гидротрансформатором. Автоматическая коробка передач гидротрансформатор

Изучаем детальное устройство

Понимание того, как работает АКПП, облегчает её эксплуатацию. Рассмотрим устройство гидротрансформатора – одного из важнейших узлов автоматической коробки. Без него движение невозможно, поскольку именно он ответственен за передачу крутящего момента по маршруту «двигатель - система АКПП». Новичкам-автомобилистам следует обратить внимание и на его жаргонное название – «бублик» (ввиду формы). А если вы предпочитаете пользоваться зарубежными источниками, там встретится определение «torque converter». Но в нашем случае важным является не лингвистика, а само назначение и устройство гидротрансформатора. Его-то мы и рассмотрим.

Основная типовая конструкция

Устройство гидротрансформатора АКПП следующее:

  1. Корпус, изготовленный из прочного материала.
  2. Насос.
  3. Муфта обгонная.
  4. Блокировочная плита.
  5. Турбина, участвующая в системе передачи крутящего момента.
  6. Реактор.
  7. Регулирующий статор.
  8. Вспомогательные элементы – крепежи, уплотнения.

Как уже упоминалось, устройство и работа гидротрансформатора направлены на качественную передачу крутящего момента. Выглядит процесс следующим образом: насосное колесо, как и все остальные элементы АКПП, соединено с двигателем. В момент его запуска оно начинает вращение. Создаётся давление масла, передаваемое на турбину. Та посредством шлицев тесно связана с валом АКПП. Таким образом, под воздействием масляного давления турбинное колесо начинает своё вращение. Разумеется, последовательность вышеописанных процессов происходит в течение считаных секунд, незаметных для водителя.

Особенности функционирования

Когда взаимодействуют только турбина и насос, в результате происходит передача крутящего момента без его изменения. За его же регулировку отвечает такая деталь, как статор. В этот процесс заложено применение остаточной энергии масла, используемой для вращения турбинного колеса. Тем временем статор направляет поток на насос, интенсифицируя его вращение. В результате фиксируется значительное увеличение крутящего момента. Существует закономерность, истоки которой берутся из физики: чем медленнее вертится турбинное колесо по отношению к насосному, тем больше выработка остаточной энергии. И этот избыток делает крутящий момент сильнее.

Турбина всегда вращается медленнее, чем насос. Это и служит практически неиссякаемым источником свободной энергии. И поэтому при увеличении скорости машины разница вращения насоса и турбины уменьшается. Обгонная муфта связывает статор с гидротрансформатором. Её особенность заключается в том, что она никогда не меняет направления движения. Благодаря этому она выводит масляный поток на лопатки статора, обеспечивая ему неподвижность, за счёт чего на насос передаётся больше энергии от турбины. Эта модель работы трансформатора гарантирует максимальную передачу крутящего момента. Получается так, что она лишь на этапе разгона автомобиля увеличивается втрое.

В процессе нарастания движения машины внутри АКПП происходят следующие явления. Как уже упоминалось выше, снижается разница скоростей турбины и насоса. Со временем наступает момент, когда масляные потоки направляют статор строго по ходу обгонной муфты. После этого гидротрансформатор перестаёт оказывать какое-либо влияние на крутящий момент. Описанный механизм имеет побочную сторону в виде снижаемого КПД. Этот показатель в данном режиме не превышает восьмидесяти пяти процентов. К тому же выделяется избыточное тепло, которое отрицательно сказывается на состоянии комплектующих автомобиля, ведёт к их перегреву.

Оптимизация работы

Для того чтобы нейтрализовать негативные проявления, описанные выше, конструкция гидротрансформатора предусматривает наличие блокировочной плиты. Она тесно связана с турбиной. Её преимущество – в подвижности, что, собственно, и обеспечивает рабочий процесс. Его основой является подача потока масла между корпусом и плитой. Образуется своеобразная механическая развязка, не влияющая на работу гидротрансформатора. Тем временем блокировочная плита смещается влево.

Когда автомобиль достигает определённой скорости, на это тут же реагирует электронный блок управления (ЭБУ) АКПП. Происходит смена потока масла, а плита прижимается вправо, непосредственно к корпусу. В этом случае одновременно блокируются и насос, и турбина. Для того чтобы сцепление плиты и внутренней части корпуса гидротрансформатора было более эффективным, последняя покрывается фрикционным слоем. И так происходит, когда нарастает скорость. При торможении данная блокировка отключается.

Суть подобного механизма сводится к тому, чтобы исключить проскальзывание турбины, совершаемое относительно насоса. Непосредственная передача крутящего момента – не единственная функция гидротрансформатора. Этот важный элемент оказывает влияние на привод масляного насоса автоматической коробки переключения передач. Для этой операции конструкция гидротрансформатора предусматривает специальный валик. Он очень прочно связан с корпусом узла посредством шлицевого соединения.

Неисправность гидротрансформатора обычно выражается неприятными рывками, пробуксовками. В этом случае предпочтительно не затягивать с ремонтом. Приблизительный перечень работ, к которым прибегают в процессе диагностики и устранения неполадок:

  1. Вскрытие корпуса.
  2. Промывка деталей, их ревизия, замена изношенных расходников. Особое внимание уделяется сальнику и уплотнительным кольцам.
  3. Сборка трансформатора с применением сварки.
  4. Проверка герметичности.
  5. Балансировка.

Вышеуказанные работы требуют специальных навыков. Промывка деталей осуществляется особыми жидкостями. Поэтому её необходимо проводить только в автосервисе, специализирующемся на АКПП. Ведь именно там досконально знают гидротрансформатор, устройство и принцип работы этой конструкции. А наличие специального оборудования и методик компьютерной диагностики практически исключит ошибки в ремонте. Обращайтесь к нам, выполним качественные

Почему гидротрансформатор называют бубликом, без труда объяснит любой, кто хотя бы однажды видел этот узел трансмиссии. Ответить, какую функцию выполняет «бублик», сложней, но догадаться можно, если учесть, что размещен он между двигателем и гидромеханической , и воспользоваться аналогией со сцеплением, расположенным там же в трансмиссиях с обычной МКП.

Как «бублик» работает и из-за чего может выйти из строя? Без знания конструкции ГТ с ответом на эти вопросы уже предвидятся трудности, потому что далеко не всем, кто представляет, как выглядит «бублик» снаружи, и догадывается, для чего он предназначен, доводилось рассматривать его изнутри. Все, что в ГТ имеется, заключено в герметично заваренный корпус — попробуй разгляди, что там есть.

Сим-сим, откройся!

Однако если разрезать «бублик» аккурат по сварному шву, как это сделали мы, выяснится, что внутри корпуса находятся две лопастные гидромашины. Одна из них называется центробежным насосом. Собственно, корпус ГТ и есть внешняя часть насоса, а лопатки насоса находятся с внутренней стороны корпуса. Корпус жестко прикреплен к маховику и, стало быть, вращается вместе с коленчатым валом двигателя. Напротив насоса находится вторая машина — центростремительная турбина. Когда после запуска двигателя корпус начинает вращаться, лопатки насоса увлекают за собой жидкость, которой заполнен ГТ. Под действием центробежной силы жидкость отбрасывается на лопасти турбины, из-за чего колесо турбины также приходит в движение. Жидкость тем временем по межлопаточным каналам турбинного колеса устремляется к центру «бублика», что снова оказаться у входа в насос.

Колесо турбины связано не с корпусом, а с входным валом коробки передач. Так, с помощью циркуляции рабочей жидкости от насоса к турбине и обратно, происходит передача крутящего момента (или кинетической энергии — кому как нравится) от двигателя к коробке передач. Но гидротрансформатором рассматриваемый узел называется неспроста, а потому что помимо осуществления гидравлического сцепления он способен изменять величину передаваемого крутящего момента.

«Бублик» превращается в трансформатор благодаря наличию еще одного лопастного устройства. Называется оно реактором и представляет собой направляющий аппарат, размещенный на пути возвращения жидкости от турбины к насосу. Каналы между лопатками реактора сужаются, из-за чего при прохождении жидкости по каналам скорость потока увеличивается. Лопатки спрофилированы так, чтобы поток поворачивался в сторону вращения насоса. Однако быстрей коленвала жестко «привязанное» к маховику насосное колесо вращаться не может. В результате кинетическая энергия ускорившейся в реакторе жидкости передается не насосу, а дальше — турбине.

Обгон и блокировка

Кроме насоса, турбины и реактора внутри ГТ имеются механизм свободного хода реактора и муфта блокировки. Оба эти устройства предназначены для улучшения экономических показателей работы ГТ или, говоря проще, уменьшения потерь энергии в нем и увеличения КПД передачи.

По мере того, как скорость вращения турбинного колеса увеличивается, изменяется направление потока, вытекающего из турбины. Лопатки реактора начинают мешать циркуляции, потери энергии увеличиваются, однако в какой-то момент изменившееся направление потока освобождает обгонную муфту, встроенную в реактор. После этого реактор начинает свободно вращаться вместе с жидкостью и перестает негативно воздействовать на поток.

При отсутствии жесткой связи между насосом и турбиной немалая часть энергии тратится, упрощенно говоря, на «перелопачивание» жидкости. Чтобы снизить гидравлические потери, по достижении турбинным колесом определенной скорости вращения срабатывает фрикционная муфта блокировки. Блокировка жестко соединяет турбину с корпусом ГТ наподобие того, как в сцеплении МКП маховик соединяется с «корзиной». После включения блокировки появляется жесткая связь между коленвалом двигателя и входным валом АКП — крутящий момент от двигателя прямиком передается коробке передач.

Кто тут временный?

Вот блокировка и есть основная проблема ГТ. Независимо от исполнения в той или иной модели АКП, принцип работы любой блокировки основан на использовании трения между ведущими и ведомыми элементами. Поскольку вращаются они с разными угловыми скоростями, включение блокировки сопровождается буксованием, вызывающим износ фрикционных накладок. Понятно, что работающие в таких условиях детали имеют ограниченный срок службы.

В отличие от сухих сцеплений в трансмиссиях с МКП блокировка ГТ работает в масле. Для долговечности накладок это хорошо, однако у любой медали есть обратная сторона. Накладки изнашиваются все равно, а продукты износа попадают в масло , после чего разносятся не только внутри ГТ, но и проникают в АКП. По мере того, как накладки становятся тоньше, увеличивается их проскальзывание, из-за чего износ прогрессирует. Когда накладки истончаются до минимума, от них начинают отрываться все более крупные фрагменты, пока от накладок вообще ничего не останется. Если микрочастицы откладываются в каналах гидроблока и соленоидов АКП, вызывая подклинивания клапанов и золотников, то более крупные фрагменты могут закупорить каналы, предназначенные для смазки подшипников, вызвав масляное голодание и последующее заклинивание.

Второе следствие износа и увеличивающегося проскальзывания — выделение в результате трения дополнительного тепла, что ведет к излишнему нагреву жидкости, а затем и ее перегреву. По этой причине ухудшаются рабочие свойства масла, что также не может не отразиться на долговечности ГТ и АКП. Кроме того, высокие температуры сказываются на сальниках и уплотнениях.

В современных АКП будто специально сделано все, чтобы уменьшить срок службы блокировки. Если в старых АКП блокировка включалась на высших передачах, то в нынешних уже со второй передачи она начинает работать с управляемым проскальзыванием, когда фрикцион прижимается к корпусу не полностью, а с микроскопическим зазором. Благодаря частичной блокировке уменьшилось время, в течение которого ГТ разгоняет автомобиль исключительно в гидродинамическом режиме, а значит сократились гидравлические потери, увеличился КПД передачи и, стало быть, экономится топливо. Однако в прицел попал и второй «заяц». Если в былые времена ГТ редко напоминал о себе до 300-350 тыс. км, то сейчас его выход из строя к 200-250 тыс. км не такое уж экстраординарное явление.

Что еще может преподнести сюрприз

Не застрахована от поломки также обгонная муфта реактора. Возможны два варианта неисправностей: обгонная муфта перестает блокироваться и удерживать колесо реактора в неподвижном состоянии либо обгонная муфта заклинивает, после чего реактор будет постоянно находиться в заторможенном состоянии. Причины поломки — износ обойм и сухарей муфты, разрушение сепаратора. Со временем изнашивается и упорный подшипник реактора, однако проблемы с ним и обгонной муфтой возникают намного реже, чем с блокировкой, а вероятность столкнуться с этими проблемами невысока еще и потому, что при ремонте ГТ из-за выхода из строя блокировки обгонную муфту ремонтники также не оставляют без внимания.

Чему должен уделить внимание владелец автомобиля, чтобы преждевременно не стать клиентом ремонтной мастерской? Прежде всего своей манере вождения. Агрессивный стиль с резкими ускорениями и торможениями, культивируемый любителями получать за рулем «удовольствие», — верный способ раньше времени превратить накладки блокировки в абразивную пудру, путешествующую вместе с маслом по ГТ и АКП. Второе — замена масла, несмотря на то, что оно, как заверяют производители, во многих современных АКП залито на весь срок службы агрегата. Масло — носитель продуктов износа, а срок службы, подразумеваемый западными производителями, по всей видимости, раза в два меньше, чем хотелось бы белорусским владельцам автомобилей с АКП.

Вердикт «Автобизнеса»

ГТ выходит из строя медленно и не всегда заметно для водителя — вот в чем беда. А когда признаки становятся явными, может статься, что проблема уже вышла за пределы «бублика» и только одним его ремонтом не отделаешься — нужно ремонтировать еще и АКП. Поэтому когда автомобиль стал с трудом трогаться с места и медленно набирать скорость либо вообще перестал трогаться с места без нажатия на педаль «газа», если при равномерном движении по трассе ощущается легкая вибрация, когда расход топлива при тех же условиях эксплуатации стал больше, чем был раньше, есть смысл показать машину специалистам — не исключено, что вы спохватились вовремя. Если восстановление ГТ обойдется в 1-3 млн руб., то ремонт АКП — это совсем другие деньги.

Мы разрезали «бублик» аккурат по сварному шву, чтобы выяснить, что находится внутри корпуса. Видны турбина и реактор


Когда накладки истончаются до минимума, от них начинают отрываться все более крупные фрагменты


Сверху новый диск блокировки, снизу — свое отработавший


Обгонная муфта реактора не застрахована от поломки


Упорный подшипник реактора. Видны следы износа на упорной части ступицы и упорной шайбе

Поделиться:

Гидротрансформатор - это внешний узел автоматической трансмиссии в форме диска, который передает крутящий момент от двигателя к трансмиссии и служит для амортизации (и трансформации) вращательного момента от двигателя при помощи двух вращающихся в масле турбин, ведомой и ведущей.

Гидротрансформатор часто называют по имени своего предшественника: "гидромуфта", потому что он соединяет как муфта (сцепление) двигатель с коробкой. Блокируясь с помощью фрикциона, гидротрансформатор выключается, передавая момент напрямую, без потерь момента. На сленге мастеров он называется "бубликом".

Гидротрансформатор, хотя и вынесен за пределы конструкции АКПП, является частью коробки передач , потому что управляется гидроблоком и соединен с гидравлической системой трансмиссии. А его неисправности непосредственно влияют на работу маслонасоса, гидроблока и на ресурс всей коробки, (подробнее - ) .

Функции гидротрансформатора :

Беречь коробку при резком разгоне и торможении двигателем. (Эту работу выполняют демпфер и гидравлическая жидкость между турбинами)

Повышение момента вращения. Само название "Гидротрансформатор" или Torque Converter произошло от того, что при разгоне происходит примерно 2-х кратное увеличение вращающего момента за счет такого же кратного уменьшения скорости вращения на выходном валу. Чем выше скорость (и меньше ускорение) - тем меньше эта кратность.

Немного об истории Гидротрансформатора:



  • Первая гидромуфта была изобретена в 1902 году и установлена в 1907-м на скоростном судне.
  • В 1928 году фирма " Lysholm - Smith " впервые применила гидромуфту для трансмиссии автобуса.
  • В 1940 году гидромуфтами оснастили первые легковые Oldsmobile.
  • А с 1946 года – гидромуфта стала использоваться в производстве серийных автомобилей (Дженерал Моторс и Крайслер, США).

Симптомы неисправности Гидротрансформатора.

Гидротрансформатор - один из первых узлов АКПП, который вырабатывает свой ресурс до капремонта. блокировки истирается (часто неравномерно - что приводит к вибрациям) начинает пачкать и перегревать масло, забивать клапана гидроблока, который недодает масла пакетам сцеплений, что приводит к АКПП.

Если задержаться с заменой изношенного фрикциона блокировки гидротрансформатора, то могут проявляться такие проблемы, как перегрев хаба, вибрации выходного вала, которые запускают следующее звено проблем - масляный насос . А насос это - "сердце" автомата, которое качает масло в "мозги"() и к "рукам-ногам"(пакеты сцепления) АКПП.

Более детально симптомы неисправностей АКПП описаны .

Как устроен Гидротрансформатор?

Гидро трансформатор осуществляет гидра влическое сцепление между двигателем и автоматической коробкой передач. В отличии от механического сцепления в МКП, ГДТ передает крутящий момент от ведущего вала ведомому не через механическое трение фрикционов, а посредством гидравлического давления масла. Как ветер вращает крылья мельницы.

Этот принцип позволяет выполнять важную функцию "амортизатора" - беречь автоматическую коробку от пиковых нагрузок от двигателя.

Наглядно об устройстве и принципе работы ГДТ рассказывают многочисленные видео .

Когда скорости вращения входного и выходного валов сравняются (а это конструктивно наступает после 60-70 км/ч), включается механическая блокировка ГДТ. С помощью фрикционной накладки поршня блокировки вращение масла останавливается, а входной и выходной валы ГДТ блокируются и двигатель с трансмиссией соединяются напрямую. Гидротрансформатор в этом режиме выключается и уже механически передает 100% вращения без потерь. Аналогично отжиманию педали сцепления на МКП.

Пока ГДТ работает, он тратит кинетическую энергию от двигателя на перемешивание масла и как следствие - на нагрев его трением. А в момент блокировки, касания фрикционом стального диска - истирается накладка и фрикционная пыль попадает в масло. Эти две побочных функции ГДТ и являются главными проблемами, которые негативно влияют на здоровье автоматической трансмиссии.

КПД Гидротрансформатора.

Средний КПД типичных 3-х и 4-х ступенчатых АКПП 20-го века при режиме "городской езды" составлял от 75 до 85%. И ГДТ автоматически выключался на скорости ок. 60 км/час. В момент, когда включается механическая блокировка, КПД этого узла сразу подтягивается к 100%. Аналог замкнутого сцепления МКП. Но пока нагрузку от двигателя к трансмиссии передает вращающееся масло - КПД этого узла резко снижается.

Чем быстрее замыкается муфта блокировки и короче период работы турбин ГДТ - тем выше средневзвешенный КПД автомата.

В 21-м веке для всех 6-ти и 8-ми ступенчатых АКПП с началом использования бортового компьютера и (электрорегуляторов) средневзвешенный кпд гидротрансформатора удалось довести до рекордных 94-95%.

Оптимизация достигается за счет того, что муфта блокировки подключается с проскальзыванием для разгона так рано, как это возможно (иногда уже со 2-й скорости - слева ) и разблокируется как можно позднее при снижении скорости. Практически приближаясь к спортивному режиму работы педали сцепления на МКП.

Регулируемое проскальзывание муфты


"Режим регулируемого проскальзывания" фрикциона блокировки - это когда фрикцион (или несколько их - по моде, введенной ), управляемый тонконастроенным соленоидом и компьютером, поджимается давлением масла на такое расстояние к корпусу, что в зазоре между ними остается тончайшая пленка масла, достаточно большая для проскальзывания и отвода температуры от поверхностей, и достаточно тонкая, чтобы заставить вращаться ведомый вал.

Похоже на проскальзывание сухого сцепления при агрессивном разгоне с МКП или на регулируемое притормаживание колес тормозной колодкой.

Таким образом фрикцион блокировки совместно с крыльчатками турбин раскручивает вал трансмиссии. Совместная работа механического и гидравлического разгона (справа-сверху )

Программисты некоторых производителей так отрегулировали это усилие, что в "спортивных" режимах разгона до 80% тяги приходится на фрикцион и остальные 20-30% всей работы по разгону выполняют масло и турбины.

Это увеличение КПД хотя и снижает расход топлива и нагрев масла, но приводит к загрязнению масла продуктами износа самого фрикциона. Нужно отметить, что это - дополнительная опция работы ГДТ. Если педаль газа нажимается мягко - то "режим проскальзывания" не включается и работают в большей степени "вечные" турбины и масло. А фрикцион при таком режиме работы может прожить 300-400 ткм пробега.

Если раньше машину разгонял поток масла между крыльчатками турбин, а муфта блокировки только чуть помогала в конце перед блокировкой, то в ГДТ 21-го века все чаще разгоняют машину именно "проскальзывающие" фрикционы, а турбины - только помогают. Это идея Мерседеса - переложить большую часть работы на фрикционы в современных ступенчатых .

Тем самым, введено революционное изменение самого принципа работы фрикциона. Если фрикционы 20-го века работали в режиме "Он-Офф" (сцепление происходило как можно короче, с ударом, чтобы ускорить переключение передач), то новые фрикционы ГДТ стали работать в режиме "Регулятора", вроде тормозных колодок колеса. ()



Это привело к таким особенностям:

1. Материал нагруженной накладки уже не тот, что был у "лениво" работающих вечных бумажных фрикционных накладок 4-х ступок, а - графитовые "хай-энерджи" составы, отличающиеся износо- и температуро-стойкостью и главное - клейкостью(слева). Именно эта "клейкость" накладки позволяет передавать сумасшедшие крутящие моменты от ревущего двигателя колесам.

И как обратная сторона медали, эти суперстойкие и суперклейкие микрочастицы, оторвавшиеся от фрикциона от многомесячного трения путешествуют вместе с маслом и "набрызгом" ввариваются-вклеиваются во все неудобные места, начиная от деталей гидротрансформатора, кончая золотниками и каналами и .

2. Полустертый фрикцион ГДТ все менее предсказуемо держит контакт и главное - вибрирует , еще сильнее нагревая корпус "бублика" и само масло. А компьютер не понимает, что фрикцион стерт и усиливает давление на него, что приводит к ускоренному перегреву и окончательному износу накладки до клеевого слоя.

На первом месте в ремонте с большим отрывом стоят "бублики" 5HP19, которые почти всегда приходят с перегретым хабом пилота (справа ) . Чтобы этот участок железа конструкции вырезать и вварить новый хаб, в каждом сервисе ГДТ есть специальное сварочное оборудование. Довольно тонкая и ответственная работа.

2А. Самое неприятное от изношенного фрикциона - это его остатки, то есть клеевой слой на который накладка приклеивается к металлу. Именно частицы клея фрикциона наиболее вредны для гидроблока и клапанов-золотников. Ну и фильтра конечно. На эти капли клея попавшие в самые важные места налипает грязь и забивает каналы. Поэтому разработчики гидроблоков и соленоидов слезно умоляют водителей своевременно менять накладку гидротрансформатора, не дожидаясь ее окончательного износа.

3. Перегретое "бубликом" масло (свыше 140°) за несколько часов такого кипения убивает резину сальников и уплотнителей и остатки фрикционов (обугливается целлюлозная основа ). И хотя в новых 6-ти ступенчатых АКПП немецких и американских производителей вместо приклеиваемой на тело поршня фрикционной накладки стали использовать настоящие фрикционные диски на карбоновой основе (см. выше слева ), перегретый фрикцион служит дольше, но зато грязь от него гораздо агрессивнее предыдущего "бумажного" поколения. Поэтому плановые замены фрикционов гидротрансформатора - стали обязательной регламентной работой на АКПП Мерседеса и ZF 6HP26 /28.

Как стареет Гидротрансформатор

1. Если накладка износилась неравномерно и слышны вибрации на скорости 50-70 км, то это убивает как сам "бублик" так и сальник и масляный насос. А неисправная работа насоса похожа на проблемы сердца и сосудов, которое недодает давления "мозгу", вызывая старческое слабоумие.

2. Если накладка износилась до нуля (а это может наступить от 100 ткм до 250- ... ткм) то фрикцион начинает "тормозить" клеевым слоем, а попадание этого клея в "сосуды" гидромозгов приводит к "инсульту" и проблемам с переключениями. Если вовремя это заметить, то еще можно ремонтировать гидроблок, но если покататься с месяц-другой, то на этом клеевом налете налипает абразивная пыль, которая съедает тело золотников до состояния запятой: "ремонтировать нельзя, менять".

3. Когда клеевой слой стерся и поршень тормозит металлом по металлу, то кроме того что повышается расход топлива и уменьшается мощность передаваемого момента на колеса, начинается усиленный нагрев масла. А далее происходит износ до таких вибраций, что возникает состояние: "менять - нельзя ремонтировать". А в этом случае вместо обычных 7 тр за ремонт бублика, затраты сразу вырастают в разы.

Кроме того в "бублике" поверхности турбин и корпуса со временем теряют гладкость из-за налета, как дно корабля обрастает ракушками (справа ).

Качество внутренних поверхностей ГДТ напрямую влияет на:

Динамические характеристики разгона и потери мощности (представьте как падает скорость шхуны с нечищеным днищем )

На нагрев масла, (худшая гидродинамика деталей быстрее перегревает масло )

Разбалансированность турбин и появление вибраций, убивающих втулки и сальники соседнего узла - маслонасоса. (как балансировка колеса, на ободе которого за ночь образовалась наледь)

На загрязнение масла из-за вышеперечисленных причин,

На перерасход топлива,

и поэтому сейчас ремонт гидротрансформатора с резкой корпуса считается регламентной операцией вроде смены масла двигателя, которую необходимо производить, чтобы заменить полустертый фрикцион и восстановить все сочленения. Очистить этот нагар с помощью жидкостей без разборки - напрасная надежда. Промывка гидротрансформатора без вскрытия это - хобби, чтобы занять беспокойный ум. Промывка растворителями может привести к окончательной разбалансировке колес и добить накладки и сальники.


Гидротрансформаторы 21 века, слабые места.

Фрикционные накладки/ Фрикционы ГДТ

Новые гидротрансформаторы 6+ ступенчатых авто имеют два режима работы:

1. Спокойный . Когда педаль газа разгоняет авто примерно в первой трети своего хода. Тогда нагружена в основном старая добрая пара турбин, использующая вихрь масла, а фрикционы ГДТ подключаются в момент выравнивания скоростей (ок. 60 км\ч) вращения обоих валов быстрым сцеплением.

Материалы для этого инновационного графитового (или кевларового) фрикциона много раз модифицировались (щадя масло и гидроблок) и сейчас имеются множество их типов: HTE, HTS, HTL, XTL. (смотри слева таблицу ) для разного крутящего момента, разных настроек компьютера и под разного водителя...2. Агрессивный/Спортивный режим. Когда педаль газа нажата в последней трети - у пола. Тогда в дело подключаются фрикционы блокировки ГДТ, отодвигая в сторону гидравлические турбины и скользя, передают колесам крутящий момент ревущего двигателя. Представьте площадь этих "проскальзывающих" фрикционов ГДТ и силу тяги двигателя!

Но фрикцион съедается первым в большинстве типов гидротрансформаторов.


Какие работы производятся при ремонте ГДТ?

1. В типичный (минимальный) ремонт гидротрансформатора входят: резка шва корпуса на токарном станке, чистка деталей, замена фрикциона муфты, сальников, ревизия деталей и сварка.

Чтобы выполнить разборку агрегата, требуется срез сборочного сварного шва по экватору ГДТ на токарном станке, и только после разгерметизации производится диагностика и замена износившихся расходников и деталей. Ниже описаны работы по переборке этого узла.

2. В сборку гидротрансформаторов входит высокоточная сварка корпуса (слева) , проверка на герметичность и балансировка.

Что изнашивается в гидротрансформаторах? (Фрикцион блокировки муфты гидротрансформатора)

Проблемы ГДТ можно представить как пирамиду:



Самая распространенная причина, вызывающая необходимость ремонта гидротрансформаторов (низ пирамиды) - износ Фрикционной накладки Поршня блокировки ГДТ - тормоза . (справа )

При ремонте старую накладку удаляют, очищают место установки от остатков клея и наклеивают новую фрикционную накладку сцепления. Это аналог замены сцепления в авто с механической КПП.

Без этой накладки или работе со "съеденным" фрикционом гидротрансформатор вполне может выполнять основные функции разгона и мало кто замечает разницу в задержке блокировки, или нештатной работе фрикциона или перегреве масла и тем более - загрязнении масла. А увеличение расхода топлива многие готовы терпеть месяцами лишь бы не отдавать АКПП лекарям - вдруг "залечат"?

Но если накладку вовремя не заменить, то:

1. Износившиеся и отслоившиеся остатки фрикциона и клеевого состава попадают в линию и забивают каналы ("мозги"), приводя к цепной реакции масляного голодания - нагрева - износа - сгорания муфт, ступиц и втулок.

2. Проскальзывающая "лысая" муфта блокировки перегревает корпус и масло, что приводит многочисленным проблемам как электрики (датчиков и ), так и фрикционов.

3. Лысая муфта скользя неоднородно съеденным фрикционом начинает вибрировать при блокировке и этими вибрациями разбивать смежные узлы сальника и втулки насоса. И эти вибрации ведут уже к ускоренному старению "железа ".

Сальники и прокладки

Следующими после фрикционов в этой пирамиде износа ГДТ стоят:- Сальники (насосного колеса, ...) вследствие их износа и старения материала (слева), и Уплотнители .

Сколько стоит средний ремонт Гидротрансформатора?



Минимальный объем работы с ревизией и заменой обязательно заменяющихся расходников в среднем стоит... " " .



Более редкие проблемы гидротрансформаторов:

  • поломки лопастей колес. (случается не так часто, но приводит к поломке ГДТ ). Определяется только при вскрытии.
  • перегрев и разрушение ступицыЗаметно при осмотре.
  • разблокировка обгонной муфты,
  • полное заклинивание обгонной муфты ; (случается не часто, проверка)
  • Замена изношенных игольчатых подшипников. (случается не часто, но при их поломке разрушается сам ГДТ, проверка)
  • замена сгоревшего хаба, передающего вращение трансмиссии. (выше )

Для ремонта гидротрансформаторов недостаточно обычного заводского токарного или сварочного оборудования. От качества и точности обработки зависит ресурс работы этого сложного узла АТ и все это требует организации специализированного цеха, поставки запчастей и расходников, большого опыта специалистов - системы отдельного бизнеса.

Отремонтированные ГДТ имеют минимально возможный процент брака и как правило ходят еще до 70-80% своего первоначального ресурса. И всегда ремонт оказывается дешевле замены ГДТ. Хотя в одном случае из ста тысячи оказывается, что убитый ГДТ дешевле заменить на БУ, чем ремонтировать.

О необходимости своевременного ремонта ГДТ не стоит убеждать того, кто уже один раз "попал" на капремонт автомата.

Может проще купить новый гидротрансформатор взамен старого?

Такой вопрос часто задают водители, которые опасаются связываться с ремонтом, а привыкли решать проблемы радикально и сразу, невзирая на траты.

По статистике, после выяснения всех деталей ремонта ГДТ или покупки нового, в 98% случаев принимается решение - "ремонт бублика". Редко ищется восстановленный.

Заказ нового гидротрансформатора - вещь настолько уникальная, что такие случаи можно пересчитать по пальцам. Также мы не практикуем замену ГДТ на восстановленный, обычно риски замены превышают выгоду от экономии 2х-3х дней.

Ремонт занимает в среднем 2-3 дня от приема до отправки.

Более дорого (ок. 10 т.р.) обходится ремонт - гидротрансформаторов ZF6 и Мерседес 722.6 с дорогими фрикционами.

В редких случаях после вскрытия ГДТ выясняется необходимость замены не расходников, а узлов, в этом случае менеджер звонит и согласовывает работы и стоимость ремонта. Стандартный перечень работ по самому популярному в ремонте ГДТ 5НР19 обходится в 7-8 тыс. р. и выглядит примерно так:



Как отправить гидротрансформатор в ремонт?



    Заполните Заявку на ремонт с указанием вашего имени контактов для связи и типа АКПП. И отошлите ее. ( )

Слейте масло , оставив на ночь ГДТ перевернутым, забейте пленкой горлышко (Кляп), упакуйте, сделав из скотча ручки, дальше - .

АТПШоп после приемки,

Дефектовки\ремонта связывается с клиентом, сообщает о дефектах и замененных расходниках,

Выставляет счет на оплату, и после получения оплаты отправляет его обратно Транспортной компанией.

(В большинстве случаев ремонт - стандартный, как описано выше)

.

Признаки выхода из строя ГДТ можно найти - .

Формальным признаком износа фрикциона муфты ГДТ или перегрева хаба, а с ним и самого насоса является протечка масла через сальник насоса .

На более поздних и серьезных этапах болезни ГДТ встречаются такие симптомы:

Посторонние вибрации и звуки,

Рывки при переключении передач, особенно в районе 60-70 км/ч - или перестает тянуть после набора скорости или до этого тянет необычно долго итд.

Увеличение расхода топлива, перегрев масла (косвенные признаки)

Практически невозможно без спецоборудования точно диагностировать приближающуюся смерть фрикциона ГДТ, что чаще всего и является причиной выхода из строя гидроблока АКПП и как следствие и самой трансмиссии.

Чем мощнее автомобиль, тем короче средний срок службы ГДТ до капремонта. И если после 150 ткм (а у неубиваемых 4-х ступок - после 250 ткм) сальник насоса начинает подтекать - значит пришла пора отдавать долг своему коню, делать капремонт.

В ремонте встречаются обычно Гидротрансформаторы легковых автомашин. Но изредка встречаются и гидротрансформаторы грузовиков большого диаметра (св 35 см)

Можно ли самостоятельно восстановить, очистить или промыть гидротрансформатор?

Ответ будет возможно и неприятный, но - НЕТ, никому еще не удавалось восстановить гидротрансформатор без вскрытия. Промыть - удавалось, но похоже на борьбу с запахом в машине установкой освежителя, вместо того, чтобы очистить и промыть пепельницу.

Что нельзя делать при "самолечении":

Однозначно не рекомендуется заливать в гидротрансформатор сильные растворители. Растворители кроме масла и нагара растворяют и резиновые уплотнители, что приводит к ускоренной смерти узлов и концу ресурса ГДТ. И совсем не растворяют клеевой состав фрикциона, который из поршня распределился равномерно по всем вращающимся деталям. Самолечение - это хобби, за которое придется платить больше, чем штатный капремонт от того, кто делает эту работу каждый день.

Ниже - любопытная сравнительная статистика (2009-2012 год) по популярности Гидротрансформаторов в ремонте :


Гидротрансформатор, представляет собой совокупность лопастей, передающий момент вращения от двигательной системы к коробке передач автомобиля. Данное устройство, без постороннего вмешательства, изменяет скорость вращения ведущих валов автомобиля. В большинстве случаев, данный механизм применяется совместно с вариатором или автоматической коробкой передач. Для точной диагностики и успешного ремонта, необходимо разобраться каким образом функционирует гидротрансформатор.

Из чего состоит гидротрансформатор?

В составе механизма находятся: статор, нанос, система блокировки, муфта и турбина. Описанные устройства, располагаются непосредственно в оболочке гидравлического трансформатора. Корпус устройства, расположен на маховике двигателя транспортного средства.

Как работает гидротрансформатор?

Устройство функционирует благодаря следующему принципу.
Связь между насосным колесом и корпусом устройства, обеспечивается благодаря муфте. Внутри корпуса устройства функционирует рабочая жидкость, приводящая в действие статор и турбину. В случае возникновения разницы момента вращения насосного колеса и турбины, происходит блокировка статора специальным устройством. Таким образом, статор контролирует правильную функцию системы.
Таким образом, становиться понятно как функционирует гидротрансформатор. Внутри устройства происходит плавная передача крутящего момента. В связи этим достигается равномерное движение транспортного средства и своевременное включение необходимое передачи. Возможность блокировки устройства, позволяет сэкономить расход топлива при движении на небольшой скорости.

В каком случае может потребоваться ремонт гидравлического трансформатора?

Трансформатор является сложным устройством, используемым в экстремальных условиях. В связи с этим трансформатор имеет свойство ломаться. Рассмотрим распространенные неполадки в работе устройства.
Как правило, неправильная работа устройства, сопровождается следующими признаками:

  • Возникновение постороннего шума в ходе переключения режимов трансмиссии. Этим объясняется неисправность упорных механизмов.
  • Возникновение вибрации на средней скорости. Нередко, виной тому является забитый фильтрующий элемент.
  • Снижение продуктивности двигателя и долгий разгон транспортного средства. В таком случае можно предположить нарушение структуры муфты.

При возникновении одной из видов неисправности, необходимо своевременно проверить и обслужить пораженный гидротрансформатор. В большинстве случаев, поломанный гидротрансформатор АКПП не оставит равнодушным ни одного автолюбителя, поскольку комфорт и безопасность управления транспортным средством снижается в несколько раз.

Как починить гидротрансформатор своими руками.

В большинстве случаев, период правильной работы автоматической трансмиссии полностью повторяет срок эксплуатации гидравлического трансформатора. Но, нередко требуется восстановить пораженный гидравлический трансформатор для дальнейшей работы автоматической коробки передач. Данная задача не составит особого труда для опытного автомобилиста. Главное, что необходимо понимать, каким образом производиться демонтаж гидравлического устройства.
Для восстановления функции устройства, необходимо разобрать его корпус. Таким образом, мы получим свободный доступ к внутренним компонентам и сможем провести самостоятельную диагностику. После разборки корпуса, необходимо тщательно проверить составляющие гидравлического трансформатора на предмет механических повреждений и нарушения структуры. Пораженные элементы восстанавливаются или заменяются на исправные. В процессе ремонта, необходимо заменить все расходные материалы и резиновые уплотнители. После чего, корпус восстанавливается и проверяется на герметичность. Затем, устанавливаем гидротрансформатор в исходное положение и проверяем его работоспособность.
Если в процессе диагностики становится ясно что некоторые элементы не подлежат реставрации, лучше задуматься о полной замене устройства. В ряде случаев покупка нового элемента, может выйти дешевле чем отремонтировать старый гидротрансформатор. Поэтому необходимо понимать, насколько оправдывает себя ремонт рассматриваемого элемента.

Удачного ремонта!

Гидродинамический трансформатор ("Гидротрансформатор" или "ГДТ") - это герметично заваренный узел, передающий крутящий момент от двигателя - к автоматической трансмиссии при помощи двух вращающихся в масле турбин. Раньше этот узел носил название гидромуфта, потому что не трансформировал вращение в дополнительный момент, а лишь соединял как муфта (сцепление) двигатель с колесами.

Название "Гидротрансформатор" или Torque Converter произошло от того, что при разгоне происходит примерно 2-х кратное увеличение вращающего момента за счет такого-же кратного уменьшения скорости вращения. Чем выше скорость (и меньше ускорение) - тем меньше эта кратность.

Немного об истории Гидротрансформатора:

  • Первая гидромуфта была изобретена в 1902 году и установлена в 1907-м на скоростном судне.
  • В 1928 году фирма "Lysholm-Smith" первой применила гидромуфту для автобусов.
  • В 1940 году гидромуфтами стали оснащаться первые легковые авто Oldsmobile.
  • А с 1946-47 годов – гидромуфта стала использоваться серийно в производстве автомобилей (США).

Для чего нужен Гидротрансформатор в АКПП?

ГДТ позволяет отказаться от педали сцепления, обеспечивает плавность разгона и как дополнительная опция - увеличивает крутящий момент при разгоне, также позволяет двигателю работать во время остановки при включенной передаче. Это можно увидеть на примере двух вентиляторов (один из которых включен вращение передается от работающего вентилятора к не работающему. На этом примере наглядно виден основной принцип работы гидротрансформатора.

Гидротрансформатор осуществляет гидравлическое сцепление между двигателем и автоматической коробкой передач. В отличии от механического сцепления в МКПП, ГДТ передает крутящий момент от ведущего вала к ведомому не через механическое трение фрикционов, а посредством гидравлического давления масла. Как ветер вращает крылья мельницы. Наглядно о принципе работы ГДТ рассказывают многочисленные видео.

Когда скорости вращения входного и выходного валов сравняются (а это конструктивно наступает после 60-70 км/ч), включается механическая блокировка ГДТ, с помощью фрикционной накладки вращение масла останавливается, а валы двигателя и трансмиссии соединяются напрямую. Гидротрансформатор в этом режиме выключается и передает уже 100% вращения. Сравнимо с отжиманием сцепления после переключения скорости.

Фактически, пока ГДТ работает - он тратит кинетическую энергию двигателя на вращение масла и как следствие - на нагрев масла от трения. А в момент, когда он блокируется - истирается накладка и эта пыль вымывается маслом. Эти две побочных функции ГДТ и являются главными проблемами, которые влияют на жизнь автоматической трансмиссии.

КПД Гидротрансформаторов.

Средний КПД типичных 3-х и 4-х ступенчатых АКПП 20-го века при режиме "городской езды" составлял от 75 до 85%. ГДТ выключался на скорости ок. 60 км/час. В момент, когда включается блокировка - КПД агрегата сразу подтягивается к 100%. Пока нагрузку от двигателя к трансмиссии передает вращающееся масло - КПД этого узла составляет около 60-70%.

Чем быстрее включается блокировка - тем выше средний КПД автомата.


В последних конструкциях 5-ти и 6-ти ступенчатых АКПП с введением интеллектуальной электронной системы управления и линейных соленоидов средний кпд ГДТ удалось довести до рекордных 94-95%.

Оптимизация достигается за счет того, что муфта блокировки подключается так рано, как это возможно (иногда уже со 2-й скорости) и разблокируется как можно позднее при снижении скорости. Практически приближаясь к режиму работы педали сцепления на МКПП.

Регулируемое проскальзывание муфты

"Режим регулируемого проскальзывания" фрикциона блокировки - это режим, когда фрикцион (или несколько - по моде введенной Мерседесом) управляемый тонконастроенным линейным соленоидом и компьютером поджимается на такое расстояние к корпусу, что между ними остается тончайшая пленка масла, которая достаточна для проскальзывания и отвода температуры от трущейся поверхности, но заставляет корпус вращаться. Очень похоже на проскальзывание сцепления при агрессивном разгоне с МКПП или на регулируемое притормаживание колес.

Таким образом фрикцион совместно с крыльчатками турбин раскручивает вал трансмиссии, что кроме увеличения КПД, приводит к дополнительному нагреву и загрязнению масла продуктами износа этого фрикциона.

Если раньше разгонял машину поток масла между крыльчатками турбин, а муфта блокировки только помогала, то в ГДТ 21-го века все чаще разгоняют машину фрикционы "проскальзывающие" с тончайшими зазорами, заполненными маслом, а турбины - только помогают. Идея, придуманная фирмой Мерседес, используется и в современных 7-ми и 8-ми ступенчатых АКПП.

То есть введено революционное изменение самого принципа работы фрикциона. Если фрикционы 20-го века работали в режиме Он-Офф (сцепление происходило как можно короче и с небольшим толчком, чтобы ускорить переключение передач), то новый принцип включения и новые фрикционы ГДТ привели к тому, что блокировка ГТД стала работать по принципу тормозных колодок колеса. То есть с тонкой регулировкой силы и времени сцепления.

Это привело к таким особенностям:

1. Материал нагруженной накладки фрикциона теперь стал не тот, что был у "лениво" работающих бумажных фрикционных накладок 4-х ступок, а - графитовые "хай-энерджи" составы, отличающиеся износо- и температуро-стойкостью и клейкостью. И эти суперстойкие и суперклейкие микрочастицы, оторвавшиеся от фрикциона путешествуют вместе с маслом и "набрызгом" ввариваются-вклеиваются во все неудобные места, начиная от деталей гидротрансформатора, кончая деталями и каналами гидроблока и соленоидов.

2. Полуистертый фрикцион все хуже держит контакт и все сильнее проскальзывает, еще сильнее нагревая корпус "бублика" и масло. А компьютер не понимает, что фрикцион стерт и продолжает заставлять его работать с длительном проскальзывании, что приводит к быстрому перегреву масла, а соответственно и трансмиссии.

Так на первом месте по колличеству ремонтов с большим отрывом стоят бублики 5HP19, которые почти всегда приходят в ремонт с изношенным до металла фрикционом и перегретым хабом привода маслонасоса. Этот участок конструкции приходится вырезать и вваривать новый. Довольно сложная и ответственная работа. (справа)

2А. Самое неприятное последствие от изнашивающегося фрикциона - это его остатки, то есть клеевой слой, с помощью которого накладка приклеивается к металлу. Именно частицы клея фрикциона наиболее вредны для гидроблока и клапанов-золотников.

3. Перегретое масло (свыше 140 градусов) за несколько суток работы убивает резину сальников и уплотнителей и остатки фрикциона. И хотя в новых 6-ти ступенчатых АКПП немецких и американских производителей вместо приклеиваемой на тело поршня фрикционной накладки стали использовать настоящие фрикционные диски с карбоном (см. выше), перегретый фрикцион также истирается и быстро загрязняет масло мельчайшими частицами фрикционного материала. Поэтому плановые замены фрикционов гидротрансформатора - стали обязательной регламентной работой на всех АКПП Мерседеса и коробок производства фирмы ZF.

Получается, что качество внутренних поверхностей ГДТ напрямую влияет на:

  • динамические характеристики разгона и потери мощности
  • на нагрев масла,
  • на загрязнение масла

и поэтому сейчас ремонт гидротрансформатора с резкой корпуса превратился в регламентную операцию, которую необходимо производить, чтобы заменить полустертый фрикцион и очистить все узлы и сочленения. Очистить этот нагар с помощью жидкостей практически невозможно. Очистка гидротрансформатора без вскрытия это - хобби.

Возрастные АКПП, пережившие период работы с горелым маслом, нуждаются в капремонте ГДТ как непременном условии продления ресурса трансмиссии.

Что изнашивается в гидротрансформаторах?

Проблемы ГДТ можно представить как пирамиду:

Самая распространенная причина, вызывающая необходимость ремонта гидротрансформаторов (низ пирамиды) - износ Фрикционной накладки Поршня блокировки ГДТ - тормоза.

При ремонте старую накладку удаляют, очищают место установки от остатков клея и наклеивают новую фрикционную накладку сцепления.

Без этой накладки или работе со "съеденным" фрикционом гидротрансформатор вполне может выполнять свои функции и мало кто замечает разницу в задержке блокировки, или ее нештатной работе, или перегреве масла.

Но если накладку вовремя не заменить, то отслоившиеся остатки фрикциона и клеевого состава попадают в масло и забивают каналы гидроплиты ("мозги"), приводя к цепной реакции масляного голодания - нагрева - износа - сгорания муфт, ступиц и втулок и т.д.

Гидротрансформаторы 21 века

Что касается нового поколения ГДТ (например для 6-ти ступенчатых АКПП), работающих при температуре 120-130 градусов, где активно используется "режим проскальзывания" , то там возникла новая проблема: Фрикционная накладка уже не приклеивается к поршню, а сама стала сменяемым фрикционным диском (слева), потому что изнашивается теперь быстрее других расходников. Но кроме того, что она изнашивается, она еще загрязняет масло новым материалом - графитовой пылью.

Графитовый фрикцион - гораздо более термо- и износо-стоек и долговечен, чем бумажный, но обладает и совершенно другими абразивными свойствами и "прилипаемостью". А это катастрофически быстро изнашивает тонкие места гидроблока и соленоидов. Каждые 100-150 ткм этот фрикцион ГДТ на разных 6-ти (и выше) ступенчатых АКПП часто приходится менять (В основном - ZF и Mercedes). Чем сильнее надавлена педаль газа, тем больше "заслуга" фрикциона для разгона машины.

Новые гидротрансформаторы для мощных авто имеют два режима работы: Спокойный. Когда нагружена в основном старая добрая пара турбин, разгоняющая машину с помощью вихря масла, а фрикционы блокировки подключаются только для блокировки разовым быстрым замыканием.

И Агрессивный режим. Когда в дело вступают фрикционы, отодвигая в сторону турбины и истираясь тянут колеса за ревущим многолитровым двигателем. Представьте площадь этих "проскальзывающих" фрикционов ГДТ и силу тяги двигателя!

Материалы для этого инновационного графитового (или кевларового) фрикциона много раз модифицировались (щадя масло и гидроблок) и сейчас имеются несколько их типов: HTE, HTS, HTL, XTL. для разного момента, разных настроек компьютера для различных температурных режимов и т.д.

Более редкие проблемы:

  • поломки лопастей колес. (случается не так часто, но приводит к поломке ГДТ). Определяется только при вскрытии.
  • перегрев и разрушение ступицы ГДТ. Заметно при осмотре.
  • разблокировка обгонной муфты, (случается не часто, проверка)
  • полное заклинивание обгонной муфты; (случается не часто, проверка)
  • Замена изношенных подшипников. (случается не часто, но при их поломке разрушается сам ГДТ, проверка)
  • замена сгоревшего хаба, передающего вращение трансмиссии.

Какие работы производятся при разборке ГДТ?

1. Чтобы выполнить разборку агрегата, требуется срез сборочного сварного шва, соединяющего половинки ГДТ на высокоточном токарном станке, и только после этого производится диагностика и замена деталей.

При разборке производятся все описанные выше дефектовки и замены, а также очистка всех деталей от налета грязи.

2. В сборку гидротрансформаторов входит высокоточная сварка корпуса, проверка на герметичность, радиальное и осевое биение.Зтем производится балансировка ГТД.

Для этих процессов уже недостаточно распространенного заводского токарного или сварочного оборудования. От качества и точности обработки зависит ресурс работы этого сложного узла АТ и все это требует организации специализированного цеха, поставки запчастей и расходников, большого опыта специалистов - системы отдельного бизнеса.

Отремонтированные нашими партнерами ГДТ имеют минимально возможный процент брака и как правило ходят еще до 70-80% своего первоначального ресурса. И почти всегда ремонт оказывается дешевле замены ГДТ, Хотя изредка (в одном случае из 100) случается, что ГДТ дороже ремонтировать, чем заменить.

О необходимости своевременного ремонта ГДТ не стоит убеждать того, кто уже один раз "попал" на капремонт автомата.

Признаки выхода из строя ГДТ

Обычно это:

  • посторонние вибрации и звуки,
  • рывки при переключении передач, особенно в районе 60-70 км/ч - или двигатель перестает тянуть после набора скорости или до нее тянет необычно долго, протечки масла итд.

Практически невозможно без спецоборудования определить смерть фрикциона ГДТ, что чаще всего и является причиной выхода из строя гидроблока АКПП и как следствие и самой трансмиссии.

Чем мощнее автомобиль, тем короче средний срок службы ГДТ до капремонта.

В ремонт идут обычно гидротрансформаторы легковых автомашин. Но изредка встречаются в ремонте и гидротрансформаторы грузовиков большого диаметра (св 35 см)

Ниже - любопытная сравнительная статистика (2009-2012 год) по популярности гидротрансформаторов в ремонте.